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Abstract

Purpose – The purpose of this paper is to investigate the inherent irreversibility and thermal
stability in the flow of a variable viscosity fluid through a cylindrical pipe with convective cooling at
the surface.
Design/methodology/approach – The non-linear momentum and energy equations governing the
flow are solved analytically using a perturbation method coupled with a special type of Hermite-Padé
approximation technique implemented numerically on MAPLE.
Findings – Expressions for dimensionless velocity and temperature, thermal criticality conditions
and entropy generation number are obtained. A decrease in the fluid viscosity enhances both entropy
generation rate and the dominant effect of heat transfer irreversibility near the wall
Originality/value – This paper presents the application of the second law of thermodynamics and a
special type of Hermite-Padé approximation technique to variable viscosity cylindrical pipe flow with
convective cooling at the wall.
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Paper type Research paper

1. Introduction
The problem of flow and heat transfer is of considerable interest in many engineering
and industrial applications such as metal extrusion, glass fiber and paper production,
petroleum refinery, manufacturing of plastic and rubber sheets, polymer sheet
extrusion from a dye, the drawing of plastic films, pipeline lubrication and processes in
the chemical industry (Schlichting, 2000). However, it is well known that viscosity of
most fluid encountered in engineering may change with temperature (Rigatos and
Charalambakis, 2001). To accurately predict the flow and heat transfer rates, it is
necessary to take into account this variation of viscosity. Viscosity variation with
temperature in case of fluid clear of solid material was the subject of many studies and
a complete literature survey may be found in Kays and Crawford (1993). These
thermoviscous fluid are characterized by a strong dissipation, induced by the
combined effect of heat diffusion and viscosity variation (Payr et al., 2005). The non-
linear character of the material tends to destabilize the flow system, breaking the
regular behavior of solutions of the corresponding differential equations (Wall and
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Wilson, 1996). Hence, it is very important to determine the thermal criticality
conditions for such thermoviscous materials in order to maintain stability in the
system (Makinde, 2007).

Moreover, it is now widely recognized that convective heat transfer problems that
were previously studied using the first law of thermodynamics can be re-examined in
the light of the second law of thermodynamics so that thermal systems can be designed
with the objective of minimizing thermodynamic irreversibility (Bejan, 1979). This
design methodology, known as entropy generation minimization, is comprehensively
covered in the book by Bejan (1996). Different sources are responsible for generation of
entropy such as heat transfer and viscous dissipation. The former is present in almost
all of heat transfer devices due to heat transfer in finite temperature differences and the
latter is responsible for dissipation of mechanical power to heat (viscous dissipation
divided by the local absolute temperature) (Makinde, 2006; Tasnim and Mahmud, 2002;
Sahin, 1999) .

The objective of this study is to investigate the inherent irreversibility and thermal
stability for steady flow of temperature-dependent viscosity fluids in a cylindrical pipe
with convective cooling at the surface. The investigation is organized as follows: in
sections 2 and 3, the physical problem is described, along with the governing equations
and their non-dimensionalization. In section 4, we introduce and apply some rudiments
of Hermite-Padé approximation technique (Wall and Wilson, 1996) in order to obtain
the criticality conditions in the system. Section 5 describes the volumetric entropy
generation rate, irreversibility distribution ratio and the Bejan number. The results are
presented graphically and discussed quantitatively in section 6.

2. Hydrodynamic and thermal analysis
Consider the steady flow of an incompressible variable viscosity liquid film through a
circular cylindrical pipe with convective cooling at the surface (see Figure 1). It is
assumed that the fluid motion is induced by applied axial pressure gradient and that
the characteristic length in flow direction is typically large as compared with that
across the film. This suggests that lubrication theory can be employed and the inertia
terms in the governing momentum and energy balance equations can be easily
neglected since we are dealing with a very small aspect ratio problem. Under these
conditions the governing momentum and energy balance equations take the form
(Schlichting, 2000).
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Figure 1.
Geometry of the problem
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The appropriate boundary conditions in dimensionless form are given as follows: the
pipe surface is fixed, impermeable and exchange heat with the ambient following
Newton’s cooling law:

u ¼ 0;
dT

dr
¼ �BiT at r ¼ 1 ð2Þ

and the axisymmetric condition along the pipe centerline, i.e.

du

dr
¼ dT

dr
¼ 0; at r ¼ 0 ð3Þ

where 0 < r <1 is the dimensionless radius, u is the dimensionless velocity, T is the
dimensionless temperature and the dimensionless viscosity � depends exponentially
on temperature as (Kays and Crawford, 1993; Sahin, 1999):

� ¼ e��� ð4Þ

The above dimensionless governing equations (1)-(4) are obtained using the following
variables and parameters:

r ¼
�rr

H
; z¼

�zz

L
; u¼

�uu

U
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; �¼ ���
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kðTi �TaÞ
; Bi ¼ hH

k
:

ð5Þ

where H is the radius, h is the heat transfer coefficient, Br is the Brinkman, Bi is the
Biot number, U is the velocity scale, �0 is the fluid dynamic viscosity at the ambient
temperature Ta, P the fluid pressure, z is the axial distance, Ti is the fluid initial
temperature, � the viscosity variation parameter, k is the thermal conductivity and G is
the constant axial pressure gradient. Equations (1)-(4) can be easily combined to give

du

dr
¼� rG

2
e�T ;

d

dr
r

dT

dr

� �
þ �

4
r3e�T ¼ 0 ð6Þ

where �¼ BrG2. In the following sections, equation (6) is solved using both
perturbation and multivariate series summation techniques (Wall and Wilson, 1996).

3. Solution method
Due to the non-linear nature of the velocity and temperature field equations in (13), it is
convenient to form a power series expansion both in the parameter �, i.e.

u ¼
X1
i¼0

ui�
i; T ¼

X1
i¼0

Ti�
i ð7Þ

Substituting the solution series in equation (7) into equation (6) and collecting the
coefficients of like powers of �, we obtained and solved the equations for the
coefficients of solution series iteratively. The solutions for the velocity and temperature
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fields are given as

TðrÞ ¼ � 1

64

ðr4Bi� 4�BiÞl
Bi

þ

ð1=16;394Þaðr8Bi2� 16 r2Bi� 4r4Bi2

þ24Biþ 64þ 3Bi2Þl2

Bi2
þOðl3Þ ð8Þ

uðrÞ ¼�1

4
Gðr� 1Þðrþ 1Þþ

1=768G�ðr� 1Þðrþ 1Þ
�ðBir4þ r2Bi� 12� 2BiÞ�

Bi
� 1

9;83;040
G�2ðr� 1Þ

ðrþ 1Þð9Bi2r8þ 9r6Bi2� 160Bir4� 31r4Bi2� 160r2Bi� 31r2Bi2

þ 44Bi2þ 440Biþ 1440Þ�2=Bi2þOð�Þ2

ð9Þ

Using a computer symbolic algebra package (MAPLE, n.d.), the first few terms of the
above solution series in equations (8) and (9) are obtained. We are aware that these
power series solutions are valid for very small parameter values. However, using
Hermite-Padé approximation technique, we have extended the usability of the solution
series beyond small parameter values as illustrated in the following section.

4. Thermal criticality study
The appearance of criticality or non-existence of steady-state solution to non-linear
problems under investigation for certain parameter values is investigated using a
multivariate series summation approach. Suppose that the partial sum

UN�1ð�Þ ¼
XN�1

i¼0

ai�
i ¼ Uð�Þ þ Oð�N Þ as �! 0 ð10Þ

is given (Bender and Orszag, 1978). It is important to note here that equation (10) can be
used to approximate any output of the solution of the problem under investigation (e.g.
the series for the wall heat flux parameter in terms of Nusselt number Nu ¼ �dT/dr at
r ¼ 1), since everything can be Taylor expanded in the given small parameter. Assume
U(�) is a local representation of an algebraic function of � in the context of non-linear
problems, we seek an expression of the form

Fdð�;UN�1Þ ¼ A0N ð�Þ þ Ad
1N ð�ÞU ð1Þ þ Ad

2N ð�ÞU ð2Þ þ Ad
3N ð�ÞU ð3Þ ð11Þ

such that

A0N ð�Þ ¼ 1; Ad
iN ð�Þ ¼

Xdþi

j¼1

bij�
j�1 ð12Þ

and

Fdð�;UÞ ¼ Oð�Nþ1Þ as �! 0 ð13Þ
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where d � 1, i ¼ 1, 2, 3. Condition (12) normalizes the Fd and ensures that the order of
series Ad

iN increases as i and d increase in value. There are thus 3(2 þ d) undetermined
coefficients bij in the expression (12). The requirement in equation (13) reduces the
problem to a system of N linear equations for the unknown coefficients of Fd. The
entries of the underlying matrix depend only on the N given coefficients ai and we take
N ¼ 3(2 þ d), so that the number of equations equals the number of unknowns. It is
very important to note that the value of d depends on the N coefficients of the partial
sum available. Equation (13) is a new special type of Hermite-Padé approximants. For
instance, by letting U (1) ¼ U, U (2) ¼ U2, U (3) ¼ U 3, we obtain a cubic Padé
approximant. This enables us to determine the possible solution branches of the
underlying problem in addition to the one represented by the original series. In the
same manner, if we let U (1) ¼ U, U (2) ¼ DU, U (3) ¼ D2U, in equation (13), where D is
the differential operator given by D ¼ d/d�, we obtain a second-order differential
approximants, which enables us to determine the dominant singularity or criticality in
the flow field (i.e. by equating the leading polynomial coefficient A3N(�) of the equation
(13) to zero). It is noteworthy that the rationale for chosen the degrees of AiN in
equation (11) for this particular application is based on the simple technique of
singularity determination for second-order linear ordinary differential equations with
polynomial coefficients as well as the possibility of multiple solution branches for the
non-linear problem (Bender and Orszag, 1978). Following Guttamann (1989), it is well
known that the dominant behavior of any output of the solution to a differential
equation can be represented for some b and H as

Uð�Þ � Hð�C � �Þb for b 6¼ 0; 1; 2; . . .

Hð�C � �Þb ln j�C � �j for b ¼ 0; 1; 2; . . .

�
as �! �c ð14Þ

where H is a constant and �c is the critical point with the critical exponent b. Using
Newton’s polygon algorithm (Kays and Crawford, 1993), the critical exponent bN can
easily be determined. If we assume a singularity of algebraic type as in equation (14)
with respect to our differential approximant in equation (13), then the critical exponent
may be approximated by

bN ¼ 1� A2N ð�CN Þ
DA3N ð�CN Þ

ð15Þ

Generally, in the case of algebraic equations, the only singularities that are structurally
stable are simple turning points. Hence, in practice, one almost invariably obtains
bN ¼ 1/2.

5. Entropy generation
Flow and heat transfer processes inside narrow channel are irreversible. The non-
equilibrium conditions arise due to the exchange of energy and momentum within the
fluid and at solid boundaries, thus resulting in entropy generation. Apart of the entropy
production is due to the heat transfer in the direction of finite temperature gradients
and the other part of entropy production arises due to the fluid friction. The general
equation for the entropy generation per unit volume is given by Tasnim and Mahmud
(2002)
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Sm ¼ k

T2
i

ðr�TTÞ2 þ �

Ti

� ð16Þ

The first term in equation (16) is the irreversibility due to heat transfer and the second
term is the entropy generation due to viscous dissipation. Using equation (16), we
express the entropy generation number in dimensionless form as

Ns ¼ H 2T2
i Sm

kðTi � TaÞ2
¼ @T

@r

� �2

þ�Br

�

@u

@r

� �2

ð17Þ

where � ¼ ðTi � TaÞ=Ti is the temperature difference parameter. In equation (17), the
first term can be assigned as N1 and the second term due to viscous dissipation as N2,
i.e.

N1 ¼
@T

@r

� �2

; N2 ¼
�Br

�

@u

@r

� �2

ð18Þ

In order to have an idea whether fluid friction dominates over heat transfer
irreversibility or vice versa, Bejan (1979, 1996) defined the irreversibility distribution
ratio as � ¼ N2/N1. Heat transfer dominates for 0 � � < 1 and fluid friction
dominates when � > 1. The contribution of both heat transfer and fluid friction to
entropy generation are equal when � ¼ 1. In many engineering designs and energy
optimization problems, the contribution of heat transfer entropy N1 to overall entropy
generation rate Ns is needed. As an alternative to irreversibility parameter, the Bejan
number (Be) is define mathematically as

Be ¼ N1

Ns
¼ 1

1þ �
ð19Þ

Clearly, the Bejan number ranges from 0 to 1. Be ¼ 0 is the limit where the
irreversibility is dominated by fluid friction effects and Be ¼ 1 corresponds to the limit
where the irreversibility due to heat transfer by virtue of finite temperature differences
dominates. The contribution of both heat transfer and fluid friction to entropy
generation are equal when Be ¼ 1/2.

6. Results and discussion
In order to numerically validate our results, physically meaningful values of the
parameters entering into the problem are chosen. The axial pressure gradient
parameter taken as G ¼ 1, so that the viscous heating parameter � is essentially equal
to the Brinkmann number Br. The Hermite-Padé approximation procedure in section 4
above was applied to the first few terms of the solution series in section 3 and we
obtained the results as shown in Tables I and II.

The rapid convergence of Hermite-Padé approximation procedure with gradual
increase in the number of series coefficients utilized in the approximants is illustrated
in Table I.

From Table II, it is interesting to note that the magnitude of thermal criticality for
viscous heating parameter (�c) increases with an increase in both convective cooling
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and fluid viscosity (i.e. Bi ! 1 and � ! 0) hence, preventing the early development
of thermal runaway and enhancing thermal stability.

In Figures 2-4, the velocity profiles are reported for increasing values of �, Bi and �.
Generally, a parabolic velocity profile is observed with maximum value along the pipe
centerline and minimum at the wall. The fluid velocity increases with increasing values
of � and �, but decreases with increasing values of Bi.

Typical variations of the fluid temperature profiles in the normal direction are
shown in Figures 5-7. The fluid temperature decreases with increasing values of Bi,
increases with increasing values of � and �. Meanwhile, minimum temperature is
generally observed at the wall due to convective cooling.

A slice of the bifurcation diagram for Bi > 0 in the (�, Nu) plane is shown in Figure 8.
It represents the variation of wall heat flux (Nu) with viscous heating parameter (�).
In particular, for � > 0 there is a critical value �c (a turning point) such that, for
0 � � < �c there are two solutions (labeled I and II). The upper and lower solution
branches occur due to the temperature-dependent variable viscosity in the governing

Table I.
Computations showing

the procedure rapid
convergence

(� ¼ 1, Bi ¼ 0.1)

d N Nu �cN bcN

1 9 0.09876508294591 0.58130755126866 0.499879
2 12 0.09875019459897 0.58129568903072 0.499999
3 15 0.09875019525148 0.58129568935107 0.500000
4 18 0.09875019525148 0.58129568935107 0.500000

Table II.
Computations showing

thermal criticality
for different

parameter values

Bi � Nu �cN bcN

0.1 0.1 0.987501952514 5.812956893510 0.5000
0.1 0.5 0.197500390502 1.162591378702 0.5000
0.1 1.0 0.098750195251 0.581295689351 0.5000
1.0 1.0 0.876894374382 5.197760638083 0.5000
10.0 1.0 3.2296703857309 22.308675312695 0.5000
100.0 1.0 3.9200319744255 30.757560158350 0.5000
1 1.0 4.0000000000000 32.000000000000 0.5000

Figure 2.
Velocity profile: Bi ¼ 1;
�¼ 2; ______ � ¼ 0.1;

ooooo � ¼ 0.5;
þþþþ � ¼ 1.0
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thermal boundary layer equation (equation (6)). When �c < �, the system has no real
solution and displays a classical form indicating thermal runaway.

Figures 9 and 10 illustrate the entropy generation rate in the transverse direction for
various parametric values. It is noteworthy that entropy generation rate is at the lowest
in the region around the pipe centerline and increases quite rapidly near the wall with
maximum value at the wall. We observe that a decrease in the fluid viscosity results
into a further increase in the entropy generation rate at the wall, whereas an increase in
Bi results into a decrease entropy generation rate at the wall.

Figure 3.
Velocity profile:
�¼ 2; �¼ 0.2;
______ Bi¼ 0.1;
ooooo Bi¼ 0.2;
þþþþ Bi¼ 0.5

Figure 4.
Velocity profile:
Bi¼ 0.1; �¼ 0.1;
______ �¼ 0.1;
ooooo �¼ 1.0;
þþþþ �¼ 2.0

Figure 5.
Temperature profile:
�¼ 0.1; �¼ 2;
______ Bi¼ 0.1;
ooooo Bi¼ 0.2;
þþþþ Bi¼ 0.5
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In Figures 11-13, the Bejan (Be) number is illustrated for various parametric values. It
is observed that the fluid friction irreversibility dominates around the pipe centreline
region, whereas near the wall heat transfer irreversibility dominates. The dominant
effect of heat transfer irreversibility near the wall further increases with increasing

Figure 6.
Temperature profile:
� ¼ 0.1; Bi ¼ 0.1;

______ � ¼ 0.1;
ooooo � ¼ 0.5;
þþþþ � ¼ 1

Figure 7.
Temperature profile:

Bi ¼ 10; �¼ 1;
_____ � ¼ 0.1;
ooooo �¼ 0.3;
þþþþ � ¼ 0.5

Figure 8.
A slice of approximate
bifurcation diagram in

the (�, Nu (Bi ¼ 1,
� ¼ 1)) plane
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values of � and group parameter (Br��1) but decreases with increasing effect of
convective cooling at the pipe surface.

7. Conclusion
This paper presents the application of the second law of thermodynamics and a special
type of Hermite-Padé approximation technique to temperature-dependent viscosity
cylindrical pipe flow with convective cooling at the wall. The velocity and temperature
profiles are obtained and used to evaluate the entropy generation number. Our
bifurcation procedure reveals accurately the thermal criticality conditions and the
solution branches. For all parametric values, viscous dissipation irreversibility
dominates around the pipe centerline, whereas near the wall the heat transfer

Figure 9.
Entropy generation rate:
Bi ¼ 0.1; Br��1 ¼ 0.1;
______ � ¼ 0.1;
ooooo� ¼ 0.5;
þþþþ � ¼ 1

Figure 10.
Entropy generation rate:
� ¼ 1; Br��1 ¼ 0.1;
______ Bi ¼ 0.1;
ooooo Bi ¼ 0.3;
þþþþ Bi ¼ 0.5

Figure 11.
Bejan number: Bi ¼ 0.1;
Br��1 ¼ 0.1;
______ � ¼ 0.1;
ooooo� ¼ 0.5;
þþþþ � ¼ 1
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irreversibility dominates. A decrease in the fluid viscosity enhances both entropy
generation rate and the dominant effect of heat transfer irreversibility near the wall. In
the future, this work can be modified in a number of directions such as: thermal
stability and second-law analysis in concentric pipe flow; effect of other models of
temperature-dependent viscosity.
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